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Abstract

Let ¢(n) denote the self-circumference of a regular polygon
with n sides. It will be shown that o(n) is monotonically
increasing from 6 to 27 if n is twice an odd number, and mono-
tonically decreasing from 8 to 27 if n is twice an even number.
Calculation of o(n) for the case where n is odd as well as
inequalities for self-circumference of some irregular polygons
are given. Properties of the mixed area of a plane convex body
and its polar dual are used to discuss the self-circumference

of some convex curves.




Introduction

Minkowski distance defined by means of a convex body was
developed by Minkowski [12], and has applications in study of
crystals [20] and differential equations [15]. Minkowski
spaces are simply finite dimensional normed linear spaces. The
articles by Busemann [2] and Petty [13] contain basic concepts
for the study of Minkowskian geometry, as do Chapter 6 of
Benson’s book [1] and Chapter 4 of Valentine’s book [22]; these
last two books also contain useful background material from the
theory of convex sets.

In this article, we deal with the perimeter of unit circles
in the Minkowski plane, using the terminology of geometry of
numbers, to give calculations and inequalities for the self-
circumference of unit circles in the Minkowski plane. This
work started with an attempt at specific calculations for the
regular polygons, from which some inequalities grew.

By a plane convex body K we shall mean a compact, convex
subset of the Euclidean plane having a non-empty interior. We
shall take a “unit circle” K for the Minkowski plane to be a
centrally symmetric convex body with its center at the origin
in the Euclidean plane. The Minkowski distance d(x,y) from x

to y is defined by




(1) d(x,y) = de(x,y)/r ,

where de(x,y) is the Euclidean length from x to y, and r is the
Euclidean radius of K in the direction of the vector y-x. See
Figure 1. We will refer to the points of tlie Euclidean plane
with this new metric as “the Minkowski plane”. The Minkowski
length of a polygon path is obtained by adding the Minkowskian
lengths of the corresponding line segments. The Minkowskian
length of a curve is defined by taking supremum over all
inscribed polygonal paths. The self-circumference of the unit
circle K is the Minkowskian length of K measured with respect
to K. In other words, the length of boundary of K using the
metric induced by K is called the “self-circumference” of K and
is denoted by ¢(K). Golab [7] was apparently the first to

prove that

(2) 6 < o(K) < 8

Equality is attained on the left if, and only if, K is affine
image of a regular hexagon, and on the right if, and only if, K
is a parallelogram. A proof of the above inequality is given

by Schaffer [16]. His book [17], Geometry of Spheres in Normed

Spaces, also contains a proof as well as historical background

related to self-circumference. Chakerian and Talley [3]




establish a number of properties of self-circumference and

raise interesting questions.

Some Definitions

Let K be a plane convex body with the origin as an interior
point. For each angle 8, O < 0 < 27, we let r(K,f) be the
radius of K in direction (cos 0,sin #), so that the boundary of
K has equation r = r(K,f) in polar coordinates. The distance
from the origin to the supporting line of K with outward normal
(cos 6.sin #) is denoted by h(K,8). This is the supporting
function of K restricted to the Euclidean unit circle. Since K
is convex, it has a well-defined unique tangent line at all but
at most a countable number of points. We let ds(K,f) represent
the element of Euclidean arclength of the boundary of K at a
point where the unit normal is given by (cos 6#,sin 6). Then

the perimeter of K is given by

(3) L(K)

27
J h(K,0)ds ,
0

while the Euclidean area of K is given by

(4) A(K)

I

27
% J h(K,8) ds(K,9)
0




The polar dual of K, denoted by K*, is another plane convex
body having the origin as an interior point and is defined in
such a way that

(5) h(K*,9) and r(K*,8) =

1 _ 1
r(K,0) h(K,9)

The mixed area A(K;,K;) of two convex sets is defined by

(6) A(K;,Ky) =

Nl=

27
J h(K;,8)ds(K,,0)
0

It turns out that the mixed area is symmetric in its arguments.
Eggleston [5] contains further properties of mixed areas. The
following result due to Firey [6] will be used: The mixed area
of a plane convex body and its polar dual is at least =«.

The unit circle K of a Minkowskian plane is referred to as

the indicatrix. Define the isoperimetrix to be that convex

body T such that

(7) h(T,8) = = h(K*, 8 + n/2)

1
r(K,6 + n/2)
(See Petty [13].) A centrally symmetric set is called a Radon
curve if it coincides with the corresponding isoperimetrix.
Pages 233, 234 of Benson [1] contain further properties of
Radon curves. We now discuss the definition of self-

circumference and give some properties.




If K is a centrally symmetric plane convex body. centered
at the origin, then, because of (1) and the succeeding

discussion, the self-circumference ¢(K) is given by
(8) o(K) = J ds(K,8) /r(K,0 + 7/2)
If K is not necessarily centrally symmetric and z is any point

interior to K, then positive and negative self-circumference of

K relative to z are defined by

(9) o (K,z) = I ds(K,8)/r(K,6 + n/2)

and

(10) o-(K,z) = J ds(K,8)/r(K,0 - =/2) ,

where the origin of the coordinate system is at z. Both

o, (K,z) and o0-(K,z) reduce to o¢(K) in case K is centrally

symmetric with z as its center. Gofab [7] conjectured that

c,(K,z) > 6. for all z € K, and min ¢, (K,2) < 9. The latter
zeK

conjecture was settled by Grinbaum [8]. The proof given in [9]

of the lower bound appears to be in error. The paper of

Sorokin [19] also is apparently in error, so that this question

is still open.




If K, and K, are plane convex bodies with the origin as an
interior point. then the length of the positively oriented

boundary of K; with respect to K, is given by

(1) op (KihKy) = I ds(K;,8)/r(K,,0 + n/2)

and the length of the negatively oriented boundary is given by
(12) o-(K;.Ky) = J ds(K{,0)/r(K,.6 - x/2)

Schaffer [18] and independently later, Thompson [21]. proved
that for a centrally symmetric set ¢ (K) = ¢-(K*) and o¢-(K) =
c,(K*). More generally Chakerian [4] used the concept of mixed

areas to prove that
(13) o4 (Ky,Kp) = o- (K%, Ky*) and o-(Ky,Kp) = o (KX, K ™)

Holmes and Thompson [11] give a definition of area and content
in Minkowski spaces which implies that the surface of the unit

ball and that of the dual ball are the same.

Polygons

The following theorem gives inequalities for the self-

circumference of regular polygons with an even number of sides.




We shall later discuss the calculation of self-circumference
for regular polygons with an odd number of sides and for some

irregular polygons.

Theorem 1. Let o(n) denote the self-circumference of an affine
image of a regular polygon with n sides. Then o¢(n) is mono-
tonically in.reasing from 6 to 2r if n is twice an odd number,
and monotonically decreasing from 8 to 27 if n is twice an even
number. Furthermore, 6 and & are the only two rational values

assumed by these families of polygons.

Proof. The affine invariance of self-circumference implies
that we only need to consider regular polygons. Assume n is
twice an odd number. Inscribe the polygon in a circle. There
are an odd number of sides on each side of a diameter. Thus
one of the sides is parallel to a diameter. By simple
trigonometry it can be shown that the Minkowskian length of a

side is equal to 2 sin #/n. Thus

(14) c(n) = 2n sin =/n

Monotonicity of §i%—§ and the fact that §i§—5 < 1 for
0 < x < /2 implies that ¢(n) < 27. Since sin n/n assumes
rational values only for n = 2 and n = 6 (see Polya and Szegd

[14] . page 144. problems 197.1 and 197.5). it follows that 6 is

RI




the only rational value attained. By using a diameter

perpendicular to two parallel sides it can be shown that

(15) c(n) = 2n tan =/n

for the case when n is twice an even number. Monotonicity of
tan X and the fact that tan 7/n is only rational for n = 4
implies the second case. B

The self-circumference of a regular n-gon, where n is odd.

is given by

(16) oc(n) = (2ntanm/n) (cosm/n)

It is interesting to look for polygons with self-

circumference equal to 7. The self-circumference of the

polygon in Figure 2 is given by

(17) o(K) = 8(1 + tan?4/1 + tan 0)

This is a convex function of # symmetric with respect to

f = n/8, attaining its minimum at # = r/8, corresponding to a
regular octagon. We can choose a value of 6 such that
c(K) = 7. Similar formulas can be derived for polygons

obtained by truncating the corners of regular polygons.

4]




Chakerian and Talley [3] discuss the self-circumference n4 (K)
at the centroid and give some estimates and conjectures. For

example they make the following conjecture.

Conjecture. The minimum value of n+(Q), as (] ranges over all

convex quadrilaterals, is equal to the minimum value of

6

6
(18) at+t EnE-ay t (a®-42a+6)

R 2 < a<3,

which is approximately 7.8201 and is attained for a = ag, =
2.6317.

They use numerical techniques and their data indicate that
the minimum value n (P), as P ranges over all convex pentagons,

is no more than 6.835. They also raise the following question.

Question. What is the least upper bound of 1+(K), as K ranges
over all plane convex bodies?

They give an example of a trapezoid to show that o (K,z)
and o-(K,z) do not assume their minimum at the same point, thus
answering a question posed by Hammer [10]. The following two
theorems give inequalities for self-circumference of a

quadrangle and a trapezoid.

Theorem 2. The self-circumference a+(Q,z) of a quadrilateral

with respect to the point of intersection of the diagonals is




at least 8, with equality if and only if the quadrilateral is a

parallelogram.

Proof. Consider a quadrilateral @ with vertices A, B, C, D
(see Figure 3). Let z be che piont of intersection of the

diagonals. Let a, b, ¢, d be the Euclidean lengths from z to

A, B, C and D respectively. Then by using similar triangles we
obtain
_ a+c b+d a+c b+d
(19) U-}-(Q’Z) = == + d + 5 + 5
Thus
(20) 0,(Q,z) =4 +2+5+2+d>8,

where the last inequality follows from the arithmetic-geometric
mean inequality. Equality is attained if and only if a = c,

b = d, which implies ] is a parallelgram. @&

Theorem 3. The self-circumference 0,(Q,0) of a trapezoid Q
with respect to the midpoint of one of the diagonals is at

least &, with equality if and only if Q is a parallelogram.

Proof. Consider a trapezoid Q with vertices A, B, C and D.

See Figure 4. 1In the figure OH is parallel to AD, OE is

10




parallel to AB, OF is parallel to BC, and OG is parallel to CD.

By using similar triangles we obtain

_AB _, BC _ CD , DA
(21) °+(Q:0) = 55 * 6F T 6c ' onm
_ AB , CD - o¢AB , CD
=oE Toct? 2(c'T) ta) Yo

where we have used the fact that CD = 20E, AB

20G, BC = 20F

and AD = 20H. The arithmetic-geometric mean inequality and

equation (21) imply ¢,(Q,0) > 8 with equality if and only if CD

= AB, which gives a parallelogram. B8

Calculation of self-circumference of some simple polygons
is interesting. For example, for the pentagon P in Figure 5.
o, (P,z) = 7. The self-circumference a+(K,z) for the polygons
in Figures 6, 7, 8, 9 and 10 assumes the values 6, 7, 8, 9 and
10 respectively. By moving z along the altitude of the
triangle in Figure 10, other values of ¢ (K,2z) will be assumed,
approaching infinity as z gets close to the vertex. The self-
circumference of the family of hexagons obtained by truncation

of an equilateral triangle at the corners is given by
(22) a(x)=9-9-’2£, 0 <t <2

The value o¢(K,z) = 9 is obtained when t = 0 and the value

c(K,z) = 6 when t = 2. The self-circumference of the family of

11




polygons in Figure 12 varies continuously from 6 to &, In
particular, for equation (22) and Figure 12, hexagons can be
found with self-circumferences equal to 2r. Thus we obtain
Minkowski unit circles with self-circumferences equal to that

of the Euclidean unit circle.

Curves

In the following we use properties of mixed areas of a
plane convex body and its polar dual to discuss self-
circumference of some convex curves. The following theorem
shows that the self-circumfernce of a plane convex body with

four-fold symmetry is at least 2.

Theorem 4. Let K be a centrally symmetric plane convex body
centered at the origin. Assume r(K,#) is an equation of the
boundary of K in polar coordinates. Assume r(K,§) = r(K,0+%),

0 < 6 < 27r. That is, K has four-fold symmetry. Then the self-

circumference satisfies o(K) > 2n.

Proof. Using the definition given in (8), and four-fold

symmetry, we obtain

(23) o (K) = J ds(K,8) /r(K,0 + 7/2)

= j ds(K,8)/r(K,8)

12




By the property of polar dual given in (5) and the property of

mixed areas given in (6), it follows that

(24) o(K) = J ds(K,8)/r(K,8) = j h (K*,8)ds (K, 6)

= 2A(K*,K).

Firey’s result [6] states that the mixed area of a plane convex
body and its polar dual is at least m. By using this and

equation (24), it follows that ¢(K) > 2. B

Regular polygons with the number of sides equal to twice an
even number have four-fold symmetry. Thus the result in
Theorem 1 is a special case of the above theorem. The unit
circles of 1, spaces satisfy four-fold symmetry and thus their
self-circumference is at least 27, with the value of 2r for the
case p = 2.

Recall that the isoperimetrix T was defined by (7). The
following theorem gives the Minkowskian length of a plane

convex body with respect to the isoperimetrix.

Theorem 5. Let K be a plane convex body. Assume T is the
isoperimetrix, that is, the polar dual rotated 90 degrees.

Then o (K,T) = 2A(K), where A(K) is the Euclidean area.

13




Proof. By the definition given in (11) we obtain
o (K, T) = J ds(K,8)/r(T,6 + =/2)

By the definition of isoperimetrix, r(T,8 + n/2) = r(K*,9).

Thus,
(25) a+(K,T) = J ds(K,8)/r(K*,8) = J h(K,8)ds(K,8) = 2A(K) .,

where we have used (4) and (5) giving the Euclidean area and

the property of polar dual. B

If K is a Radon curve, then it coincides with its isoperi-
metrix. Thus the self-circumference of a Radon curve is equal
to twice its Euclidean area. We conclude by proving the
following theorem, concerning the length of a Euclidean unit

circle with respect to a convex curve K.

Theorem 6. Let K be a plane convex body. Assume B is the
Euclidean unit circle. Then the length of B with respect to K
is equal to the Euclidean length of the polar dual of K. That

is, 0 (B,K) = L(K*).

Proof. By the result of Chakerian given in (13) we obtain

(26) 04 (B.K) = o-(K*,B*) = o-(K*,B)

14




Assuming that the polar dual of K is calculated at the center
of the Euclidean unit circle B, it follows that o4 (B,K) =

L(K*). ®

In the particular case where K is a square with vertices at
(£1.,0), (0,+x1), the Minkowski distance is the same as the so-
called Taxicab metric. The polar dual is a square with sides
parallel to the axis. See Figure 13. Thus the length of a
Euclidean unit circle in Taxicab metric is the same as the
Euclidean length of the circumscribed square which is &, and

thus we have finally squared the circle.

15
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